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Abstract. In this paper an absorbing boundary condition for floating two-dimensional objects in current and waves 
is studied. A numerical algorithm has been developed, which computes the velocity potential in the physical time 
domain, by using an artificial boundary to split the infinite fluid domain into a computational part and a residual 
part. A special Green's function has been developed in the residual part. The condition on the artificial boundary 
is independent of wave frequency, hence not restricted to harmonic waves. Because of the smaller computational 
domain and the independence of frequency, the time to compute the hydrodynamic coefficients of floating objects 
decreases. 
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Introduction 

Computing the interaction between waves and the velocity of a ship can be done by using 
the frequency domain or the physical time domain. The disadvantage of the studies in the 
frequency domain is their restriction to harmonic waves. Real waves, especially those close 
to the floating object, are not harmonic. In the time domain we can also handle non-harmonic 
waves. Several time-domain methods have been developed, most of them are being confined 
to problems with bodies that have no mean forward speed (for instance Yeung [1], Newman 
[2] and others). Nakos [3] and Prins and Hermans [4, 5] have developed a two- and three- 
dimensional time-domain algorithm to compute the behaviour of floating objects in current 
and waves. In this paper we use the method developed by Prins, because the results are very 
satisfactory. 

The physical fluid domain is infinite (or large). The computational domain cannot be 
infinite, so we have to introduce artificial boundaries and proper boundary conditions. In 
the literature, several methods have been proposed to absorb free-surface waves. Romate [6] 
reviews most of these methods and gives the basic techniques and references. A survey of 
these methods is given in section 2.  On the basis of Romate's literature survey, Prins decided 
to use an extension of the Sommerfeld radiation condition for two families of waves. The 
disadvantage of this Sommerfeld condition is that it is dependent on wave frequency, so it 
cannot handle non-harmonic waves. Keller and Givoli [7, 8] introduce a method which uses an 
artificial boundary, dividing the original domain into a computational domain and a residual 
domain (the interior and the exterior). 

In this paper we derive a two-dimensional boundary condition independent of wave fre- 
quency, using the idea of Givoli's method with Prins's algorithm. We develop a special Green's 
function in the exterior. The condition absorbs the outgoing waves. This method also reduces 
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computer time, when computing the behaviour of an object in harmonic waves. Firstly, the 
boundary is closer to the object and, secondly, it is not necessary to implement the conditions 
dependent on every frequency. The two-dimensional results inspired us to tackle the three- 
dimensional problem as well. 

In this paper, we first describe the mathematical model and the numerical algorithm of the 
time-domain algorithm in the interior. In the second section we give a survey of absorbing 
boundary conditions and explain our method. Then we present the mathematical model and 
the numerical algorithm of the exterior. In the fourth section we handle the total problem, the 
combination of the interior and the exterior. In the results, we first look at the reflections and 
then we compute the hydrodynamic coefficients, like added mass, damping, movement and 
the second-order forces. 

1. The time-domain algorithm, the interior problem 

1.1. MATHEMATICAL MODEL 

We reduce the problem of a horizontal circular cylinder with radius R and of infinite length to 
a two-dimensional one. The cylinder is floating in water of depth h. A uniform current with 
velocity U and regular incoming waves are travelling in the positive x-direction. The cylinder 
is free to oscillate in the x- and z-directions, and is free to roll. The coordinate system is 
chosen such that the undisturbed free surface coincides with the line z = 0 and the centre of 
the circle is located at x = O, z = O. 

We assume the following restrictions: there is no viscosity, the fluid is incompressible and 
homogeneous, and the flow is irrotational. We introduce the velocity potential 6~, which has 
to satisfy the Laplace equation 

V20 = O. (1) 

By using the dynamic and kinematic conditions and splitting the potential into a steady and 
an unsteady part, like 

O(x,t)  ='~(x) + ¢Cx, t) , 

we get the linearized free-surface condition 

--2 
eft + gCz + 2~xCxt + 3¢zfzxCx + ¢~¢xx + ~z:~ft 

_ 1  ( U 2 _ ~ 2 )  (¢zz ~z_tt~ = 0  at z = 0  (2) 
2 g / ' 

with subscripts denoting the partial derivative and g the gravitational acceleration. The steady 
potential is represented by the double body potential. For a circle this can be written as 

¢ =  U x +-~dist= Ux l + x2 + ~ . (3) 

We also use a linearized formulation of the body boundary condition (see Timman and 
Newman [91) 

OCn OX 
0--~- = O t  " n  - X . ( n  . V)VCn, 
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with ~brt the potential on the hull and X the displacement of the cylinder. 

The bottom is a rigid wall, so we submit the potential on the bottom, ~bb, to the condition 

O~bb ~--- 0 .  (4) 
On 

The computational fluid domain is enclosed by a left and a right artificial boundary B. So 
far we can only say about the potential on this artificial boundary that it satisfies the Laplace 
equation and that it remains finite if we take B at infinity (see Fig. 1). 

In the following section we give a survey of absorbing boundary conditions. On the basis 
of the results of the DtN method, we then decide to divide the infinite fluid domain into an 
interior part and an exterior part. Thus, on both sides of the interior is an exterior 79. In the 
interior ,5' we use the mathematical model described above, which is the same as Prins and 
Hermans [4] use, but we do not implement a Sommerfeld radiation condition at/3. 

Figure 1. The geometry 

h 

1.2. NUMERICAL ALGORITHM 

To solve the interior problem, we introduce a Green's function, G, satisfying Eqs. (1) and (4) 

1 1 
G(x, ~) = ~ log r + ~ log r2 ,  

where r = I x - ~1 and 7" 2 = IX - -  ~t [ ,  with ~' the image o f~  with respect to the bottom. By 
using Green's second theorem, we get for the potential in the interior fluid domain 

OG 

with 

6= ~ z 6 0 S  , 
0 elsewhere 
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where OS represents the boundary of the domain and OSb the bottom. Green's theorem makes 
it possible to rewrite the interior problem as follows 

D e ( t )  = E¢ ,~( t ) ,  

with ~/, a vector ( ¢ f [ ~  [¢B), containing the potential on the free surface, on the hull and on 
the artificial boundary. To solve this integral equation we discretize the boundaries by dividing 
these into panels. We assume that the potential has a constant value on such a panel. Prins's 
approach consists of two steps leading to a Fredholm integral equation of the second kind. 
Firstly, the free-surface condition (2) and the second-order Sommerfeld radiation condition 
are discretized with respect to t, where an implicit scheme is used for the time derivation. 
Secondly, Cn is expressed in ¢ and its tangential derivative along the boundaries, while at the 
object Cn is supposed to be known. Discretization of the integral equation leads to a matrix 
equation for the unknown vector ¢ 

Dl~bi+l = D2ddi + D3~bi-I + f i+l , (5) 

with subscripts denoting the time level and f a time-dependent vector. In our approach we 
make use of the same algorithm as developed by Prins, except for the boundary B. Experience 
has taught that the implementation of the Sommerfeld condition on the outer boundary B is 
efficient if B is taken at a distance of about three wavelengths, while the coefficients for the 
two families of waves are dependent on the frequency. Hence, the matrix has to be updated 
for each frequency. Our purpose is to obtain a genuine time method, where the matrix is 
independent of the frequency. 

2. Absorbing boundary  conditions 

In the literature, several methods have been proposed to absorb free surface waves. These 
are reviewed in, for instance, Romate [6]. A short description of these methods and some 
references are given in this section. The most frequently used techniques are: 

- Artificial damping (sponge layer) 
A possibility to absorb the outgoing waves is the use of artificial damping, in particular 
in the form of a sponge layer. In this method an artificial dissipative term is added to 
the equations near the artificial boundaries of the truncated domain, so that outgoing 
waves are absorbed with as little wave reflection as possible. This method is used by, 
for instance, Israeli and Orszag [10]. The advantage of this method is that it is easy to 
implement and that it has good reflection properties for a wide range of frequencies, but 
the disadvantage is that a large domain is needed for the damping zone. 

- Partial differential equations 
Sommerfeld's radiation condition [11] is required to make the problem well posed at 
infinity and the condition corresponds to the outgoing waves only. For harmonic solutions 
with wave number k it reads 

V / ~  (¢r - ik¢) ~ 0 as r --+ ~ ,  
or in the time domain 

c C r -  Ct ~ 0 as r ~ ~ ,  
with c the local phase velocity of the wave to be absorbed. Applying this condition at 
the artificial boundary gives a set of partial differential equations. Using partial differ- 
ential equations as an absorbing boundary condition can be done in somewhat different 
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approaches. The technique which is probably the most widely used was published by 
Orlanski [12]. He used a first-order equation. The novelty in his approach was that the 
phase velocity needed in this condition was evaluated numerically in the vicinity of the 
boundary. 

For the acoustic wave problem Engquist and Majda [13] derived a higher-order 
differential operator at the outer boundary (see also Jones and Kriegsmann [14]). Prins 
and Hermans [4] use an extension of the Sommerfeld radiation condition for the two 
wave families, a second-order partial differential equation, which can be written after 
substituting the phase velocity as 

02~ ( ~ ) O q 2 ~  ) /[20q2q~ =0 
Ot 2 + U rk 2 ~ + v On 2 , 

with r = (Uo;/g) < 0.25. This condition is easy to implement, but it absorbs only the 
waves of which the wave velocity is included. Other waves are partly reflected. Therefore 
this condition is dependent of the wave frequency. 

- Use of exterior solutions 
Another way of modelling the absorption of the waves at an artificial boundary is the 
use of simple exterior solutions. In the exterior, boundaries and boundary conditions 
are simplified such that an analytical solution can be found. This technique of matching 
analytical far-field solutions and numerical solutions was, among others, applied by Bai 
and Yeung [15] to the linearized sea-keeping problem in the frequency domain. 

In [16], Yeung gave a time-domain solution of a swaying axisymmetric structure with 
no mean forward speed. This formulation uses a 'simple-source' representation for the 
inner domain, while the time-dependent Green's function (used by Newman [2], for 
instance) is used in the exterior. In principle, this method can be extended to the situation 
with U # 0. However, we decided to use a formulation for the discretized free-surface 
condition. 

- DtN relation l 
For the acoustic-wave equation, Givoli [8] derived a DtN relation at the outer boundary 
used in combination with a finite-element approach in the interior. This method is very 
efficient. In the method, a DtN relation is derived, in principle with the help of an explicit 
solution, by means of the expansion of orthogonal functions. In the frequency domain, the 
DtN relation becomes homogeneous, while in the time domain an inhomogeneous term 
originates from the fact that the complete propagating exterior solution has to be taken 
into account. In the shallow-water case, an orthogonal set ofeigenfunctions is available 
in the exterior. A direct application, however, is much less efficient than in the acoustic 
case. Too many terms have to be taken into account due to slow convergence. The main 
result of Givoli is that the complete exterior field has to be taken into account. 

We follow the idea of the DtN relation. Because q)n is not expressed in 4> at the boundaries 
B in our interior case, our vector of unknowns in Eq.(5) becomes qJ = ($$1q~lSBl$rn). To 
render the matrix equation uniquely solvable, we have to add a matrix relation between q>B 
and ~bBn (DtN relation). 

i The Dirichlet-to-Neumann relation is the relation between the Dirichlet datum u and the Neumann datum u' 
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3. The exterior problem 

3.1. MATHEMATICAL MODEL 

A current moving at velocity U in the positive z-direction is the same as an object moving at 
speed U in the negative :~-direction. We assume the interior to be moving together with the 
object ('ship-fixed'), while the exterior is fixed to the earth ('earth-fixed') for one time step 
(see Fig. 2). 

U ., ........ OS at t 

Figure 2. The geometry on t and t + At, earth fixed 

In the exterior the velocity potential also has to satisfy the Laplace equation (1) and 
the bottom condition (4). Because the exterior does not move during a single time step the 
linearized free-surface condition can be written as follows 

cktt + g(gz = 0,  (6) 

where we have neglected ~bdist in Eq. (3). By making ~bz explicit and discretizing ~tt by a 
first-order difference, we get: 

1 1 
dpz,i+l + ~ b i + l  g(At) 2 (2~bi ~bi-l) at z 0 ,  (7) 

with At the size of a time step. 

3.2. NUMERICAL ALGORITHM 

To solve the exterior problem, we introduce a Green's function, G, which satisfies 

G z + # G  = 0 a t z = 0  

V2G = 0 x, ~ ~ :D 

Gz = 0 at z = - h  

G = 0; Gn=O l imv--+c~,  

with # = 
Green's theorem, we get for the potential in the exterior 

6qbi+'(x) = fB (~bi+'(')~n~(x,') - G ( x , ' ) ~ ( ' ) )  dz~ 

(8) 

(9) 

1/(g(At)2). The last relation is the only physical radiation condition. By using 
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with 

{ 1 t a: E 79U079S 

0 elsewhere 

and 0791 the free surface of the exterior. We need to mention that the normal derivative on the 
boundary in the exterior is the negative of that of the interior. By analogy with Wehausen et 
al. [17] we derive a Green's function, which satisfies (8) 

G(~,~)  = ~-~logr + logr2 

l foC~ e-kh ( ( k -  #)coshk(z + h)coshk(~ + h )cosk (x -~ )  + l )  d k 
7r k k sinh kh + # cosh kh 

oo 1 rn~ + # 2 cosmk(z + h)cosmk(~ + h)e_mklz_~l 
= -- E mk hm 2 + h# 2 + # 

k = l  

(10a) 

(lOb) 

with ~ = (~, ~) and mk as imaginary parts of the purely imaginary poles. 

Wehausen computes the Green's function in the frequency domain, where v = - #  is the 
wave numberw2/g, thus the integral equation has a pole at m0, with tanh(m0h) = w2/(mog). 
The integral has to be split into a Cauchy principal-value part and a residue. In the time domain 
the integral equation has no real poles, because # = 1/(g(At)2). Hence we do not have the 
residue part. The summation (10b) has been derived by a transformation in the complex plane 
and by taking the summation of the residues. The imaginary poles in the time domain have to 
satisfy 

imk tanh(imkh) = - #  mk tan(mkh) = # mk E ~ .  

We have to use the integral form (10a) for small Ix - ~ [, because the summation (10b) does not 
converge. This is the reason why the direct DtN approach does not work. By first integrating 
the Green's function with respect to the surface, the convergence speeds up for both the 
sum and integral form. Computing the integral form by using the 5-point Gauss-Laquerre 
quadrature formula is a good approach, but it requires a lot of computer time. A better way is 
to write the integral as f~o e_Zf(x)dx and to use fast Gauss-Laquerre integration routines to 
compute it. 

By using Green's theorem we have to integrate the Green's function with respect to ¢ or 4, 
we are able to write for the potential in the exterior 

with CB the vector (¢t~lCt~n) and ET)~b is the last term of (9). 

Upon a more careful reexamination of the paper by Yeung [16], Eq. (9) can be considered 
as a discrete solution of an 'exact' time-dependent wave-maker solution (Eq. (5.7) in [16]). 
The 'shell method' is, in essence, of the same form as the DtN relation. Without forward 
speed, both methods give good results. The advantage of the DtN relation is that we have to 
compute the Green's function just once. However, the shell method does not need to cover 
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the free surface of the exterior with panels. To date, there have been no results available from 
the shell method that include forward speed. It is easier to implement the effects of the double 
body potential by using the DtN method instead of the shell method. However, by taking into 
account the double body potential, using the shell method, we also need to define panels at 
the free surface. 

4. Total problem 

In the absence of current, at time t + At the artificial boundary B of the exterior is the same 
as the artificial boundary of the interior. Hence, combining Eqs. (5) and (11), we are able to 
write the interior problem as an overall matrix equation, like Eq. (5), 

D l ¢ i + l  = D2~bi + D3¢i-1  + f i+l + E/~b ,  (12) 

with ¢ a vector containing (¢I[¢7-tl¢slCt%). 
If the object is moving with a current U in the negative x-direction, the boundary of the interior 
moves a distance U A t  to the left with regard to the boundary of the exterior. To express the 
potential on the boundary of the exterior in terms of that of the interior, we apply Green's 
theorem on the domain between the boundaries (see Fig. 3). Thus we discretize the artificial 
boundaries and the free surface between the boundaries by dividing these into panels. 

O Sv, ,  t OSu t 

Df ~ Df 

& ri 
~undari, 

I 
' O S  a t  t [ 

I OS at t + A t  
--" - 0l) 

Figure 3. Using Green's theorem at the boundary. 

Here we give a derivation for expressing the potential on By in terms of the potential on 
13s, in the domain on the left side. The derivation on the right side is analogous, taking proper 
account of the direction of the normal derivative. By applying Green's theorem in a clockwise 
direction to the domain between the boundaries, with the normal pointing out of the domain, 
and using the Green's function which satisfies (8), we get 

,, oo, ,,, 0o, 

where q~ is the potential on the free surface of the exterior in the past (see Eq. (11)). If we 
assume ¢ on the boundary Ba, then ~ = ½. By subtracting (9)-(13) we get 
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Now we are also able to define the problem with uniform current speed U as an overall 
matrix equation such as (12). After computing the potential on the interior and on the artificial 
boundary, we are able to compute the potential on the free surface of the exterior by using (9). 
On the right side, the potential ¢ on aSuAt is defined by the potential on the free surface of 
the interior and on the left side on that of the exterior. 

5. Results 

5.1. REFLECTIONS 

We first look at the reflections of the artificial boundary, using the algorithm mentioned in 
the previous sections. We force the cylinder to oscillate harmonically over a time interval 
of six periods according to the frequency of encounter. During this interval 300 time steps 
were taken. To have an idea of the reflection, we compare the surface elevation close to the 
object both when the artificial boundary is far away (so there is no reflection), and when the 
boundary is close to the object. 

Figs. 4 and 5 show the surface elevation versus the horizontal distance from the object. 
The cylinder is forced to oscillate in heave, there is no current, the depth is infinite and 
w0v/-R--~ = 0.5. Exactly after a period of oscillation, we plot the surface elevation. It is 
clear that after a few periods a periodical wave pattern arises next to the object. When there 
is no reflection (Fig. 4b), after four periods the surface elevation is exactly the same after 
every following period of oscillation. When there is a total reflection (i.e. a rigid wall at one 
wavelength, Fig. 5a), the surface elevation changes considerably after every following period. 
It is also clear that for both the Sommerfeld condition at 3A and the DtN relation at 1)~ the 
reflection is very small. 

We use the wavelength A defined by 

27r with w = wo + k U  and k tan k h  = w2° 
g 

with w the frequency of encounter. 

0 

- 5  

x 10 -5 

"0  ~- 0 

A 

0 0 .5  1 

A. Artificial boundary  at 1A 

-5 

0 

x 10 -5 x 1 period 
~4A - e- - 2 periods 

. . . .  3 periods 

. . . . . . .  4 periods 
5 periods 
6 periods 

0 .5  1 

B. Artificial boundary  at 4A 

Figure 4. The surface elevation using the DtN method 
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x 10 -5 

o 

- =  , 

0 0.5 1 

A. Rigid wall at 1A 

Figure 5. The surface elevation 

x 10 -s 

s (  

0 

-s x/a 
i J 

0 0.5 1 

B. Sommerfeld at 3A 

We studied the case for both infinite depth (i.e. choosing the bottom relatively far away) and 
the ratio depth/draught equal to 3 (i.e. h / R  = 6). To be able to compare our results with Prins 
and Hermans's results [4], we look for both U = 0, so the Froude number Fn = U / V ~  = O, 
and for Fn = .  14. 

We use about 20 panels on the upstream free surface of the interior and, because of 
the equidistant grid, more than 20 panels on the downstream free surface. On the artificial 
boundary and on the free surface of the exterior, the size of an element is twice the size of an 
element of the interior free surface. 

The length of the exterior depends on the length of the time integration. Givoli [8] chooses 
the length of the exterior such that it is always just ahead of the wave fronts. This length is 
not constant during time-stepping. We choose the length such that a wave will not be back 
at the boundary during the time integration. For instance, to compute the added mass and 
damping we use a time interval of four periods for the frequency of encounter. The length of 
the exterior is 1½ wavelengths. 

In Fig. 6 we show a relative reflection versus the horizontal distance from the object to the 
boundary for both the Sommerfeld and the DtN relation after 6 periods of forced oscillation. 
This is also an example with w 0 x / " ~  = 0.5 and no current. We get the relative reflection 
by calculating the difference between the surface elevation (4x next to the object when the 
boundary is far away (no reflections), and when the boundary is closer to the object. This 
difference is scaled by (4~. 

To get about the same reflection that Prins gets when using three wavelengths and the 
Sommerfeld relation, we have to use an interior of about one wavelength. This means that the 
matrices DI ,  D2, etc. are smaller, so computer time decreases. 

Another advantage of our method is that we do not have to update the matrices DI ,  D2, 
etc. for every wave frequency. This also reduces computer time considerably. We divide the 
frequency domain such that for one group of frequencies the interior is one wavelength for 
the smallest wo and two wavelengths for the largest w0. There are 30 elements per wavelength 
for the smallest w and 15 elements for the largest to. Using groups, the artificial boundary is 
more than one wavelength away for all to, except the smallest, so the reflection will be less if 
we take the frequencies apart, but we take fewer elements per wavelength, so the computation 
will be less accurate. 
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0.04 

0.03 

0.02 

0.01 

0 
0 

o 
DtN relation 

o Sommerfeld condition 

)l( 0 
0 0 

0 0 
)I( )I( ~ )I( 0 

I I I ~ ~ i  l i~ 

0.5 1 1.5 2 2.5 3 B at x/A 
Figure 6. The reflection after 6 periods of forced oscillation. 

5.2. THE ADDED MASS AND DAMPING 

Knowing the potential due to the diffracted waves, we are able to compute the hydrodynamic 
coefficients, the added mass and damping matrices A and B ,  by fitting the first-order forces 
to the acceleration and the velocity. 

F = p  ~ + V O . V  nds  = - A - ~  (gt ' 

with p the density of the fluid. Computing the added mass and damping coefficients, (Figs. 7, 
8, 9 and 10), is done in groups of frequencies in the same way as mentioned in the previous 
subsection. This way of computing the coefficients takes much less time than the way in which 
Prins computes them. For instance, to compute the coefficients in sway at w0x/-R-~ = 1 and 
Fn = 0 we need about 20 sec to fill the matrices and 40 sec to time iterate and compute 
the coefficients (computations are done on an HP 9000/720 workstation). This is respectively 
2_3 and ½ of the time Prins needed. This is only for one frequency. By using the groups 
of frequencies we do not have to update the matrices. Thus by using groups of about five 
frequencies we need only 30% of the time Prins needs to compute them. 

.8 

.4 

APed ~". ~'\ I Fn = .O , h = oo l 
--F.=.O,  =61 

~'. 'x I . . . .  F n - -  .14, ~ = ool 

R 

.8 

.4 

'~.q 

0.5 1.0 1.5 

Figure 7. Added mass and damping in heave. 



584  

.6 A 

.4 

.2 

L.M. Sierevogel and A.J, Hermans 

"" ~'--~"~-~,._~ /-ff 
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Figure 8. Added mass and damping in sway. 
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Figure 9. Coupled added mass and damping in heave• 
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5.3. MOVEMENT AND SECOND-ORDER FORCES 

Computing the movement and second-order forces we use as incoming potential in the interior 

¢ i , c ( x ,  t )  = gCa cos(tot - k x ) e  kz , 
tOO 

with Ca the wave height due to the incoming wave. The movement X of the ship can then be 
calculated by solving the following differential equations, with F l  the first-order forces due 
to incoming and diffracted waves• 

F ,  = p -~- + V ¢ .  V ¢  rids = (M + A)--~-- + B--~-  + R X  , 

b ~ 0 to ~ R  0.5 1:0 o v g  

• W R 

b:5 ' ....j 1.0 1.5 
/ 

/" 
-.2 

-.4 

f*" 

I "  
/ 

/ F n = . O , h = c ~  I 
e,/" - - F n = . O ,  g =6 

./.:" . - . . F n  = .14,~h = ~x~ I 
, . . . .  Fn-- 14, --61 

~ w / .  '' 
R ] 

Figure 10. Coupled added mass and damping in sway. 
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.8 

.4 

with R the matrix of restoring coefficients, built up by the zero-speed restoring coefficients 
and the the term p f n  V ¢ ( X .  V) V ¢ n d s .  After we have calculated the movement of the ship, 
we are able to compute the potential attributed to this motion. The total unsteady potential is 
now known, so we can compute the average second order-forces, (F2}, (see Fig. 11), which 
are correct up to the second order in the velocity, by the following formula: 

(F2) = - p g  n + 
x = -R, z = 0 

where fir is the linearized relative wave height. 
The time integration was carried out over a time interval of 8 periods according to the frequency 
of encounter. During this interval 400 time steps were taken. The equations of motion were 
integrated using Crank-Nicholson's implicit method. 

/ 

/' 
/' 

i 

• _ .  ~ , ,Ov  g 

0.5 1.0 1.5 
-.5 

. . . .  Fn  = .0 
. . . .  Fn = .14 

" ~ 1 ~  ta n 
'.0 1.5 

\ / 

Figure 11. The horizontal and vertical drift force for infinite depth. 

6. Conclusions 
In this paper we discussed the development of an absorbing boundary condition for floating 
two-dimensional objects in current and waves, by using time integration. By dividing the 
physical fluid domain into a computational part and a residual part, we derived a frequency 
independent numerical algorithm to compute the hydrodynamic coefficients. Computing the 
special Green's function in the residual part is relatively costly. A faster algorithm will be 
developed in the future. Our method, however, uses only about one-third of the computer time 
that was needed when using the Sommerfeld radiation condition at the artificial boundaries. 
To be able to compare our results with those of Prins and Hermans [4] we only compute 
the interesting coefficients for a range of frequencies. In the future, we will try to extend the 
method to general time signals and we will use this method to compute the hydrodynamic 
coefficients on floating three-dimensional objects in current and waves. 

7. Acknowledgements 
Financial support for this work has been granted by the Maritime Research Institute in the 
Netherlands (Matin). 



586 L.M. Sierevogel and A.J. Hermans 

References 

1. R.W. Yeung, The transient heaving motions of floating cylinders. Journal of engineering mathematics 16 
(1982) 97-119. 

2. J.N. Newman, Transient axisymmetric motion of a floating cylinder. Journal offluid mechanics 157 (1985) 
17-33. 

3. D.E. Nakos, Rankine panel methods for time-domain free-surface flows. Proceedings of the numerical ship 
hydrodynamics symposium, Iowa, USA (I 993). 

4. H.J. Prins and A.J. Hermans, Time-domain calculations of the drift forces on a floating two-dimensional 
object in current and waves. Journal of ship research 38 (1994) 97-103. 

5. H.J. Prins and A.J. Hermans, Time-domain calculations of the second-order drift forces on a floating three- 
dimensional object in current and waves. Schiffstechnik 41 (1994) 85-92. 

6. J.E. Romate, The numerical simulation of nonlinear gravity waves in three dimensions using higher order 
panel method. Ph.D. thesis, University of Twente, The Netherlands (1989). 

7. J.B. Keller and D. Givoli, Exact non-reflecting boundary conditions. Journal of computational physics 82 
(1989) 172-192. 

8. D. Givoli, Numerical methods for problems in infinite domains. Elsevier, Amsterdam, The Netherlands 
(1992). 

9. R. Timman and J.N. Newman, The coupled damping coefficients of a symmetric ship. Journal of ship 
research 5 (1962) 1-7. 

10. M. Israeli and S.A. Orszag, Approximation of radiation boundary conditions. Journal of computational 
physics41 (1981) 115-135. 

11. A. Sommerfeld, Partial differential equations in physics. Academic Press, New York, USA (1949). 
12. I. Orlanski, A simple boundary condition for unbounded hyperbolic flows. Journal of computational physics 

21 (1976) 251-269. 
13. B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves. Mathe- 

matics of computation 31 (1977) 629-651. 
14. D.S. J•nes and G.A. Kriegsmann• N•te •n surface radiati•n c•nditi•ns. S•AM J•urnal •f applied mathematics 

50 (1990) 559-568. 
15. K.J. Bai and R.W. Yeung, Numerical solutions to free-surface flow problems. Proceedings of the tenth 

symposium on naval hydrodynamics, Cambridge, USA (I 974). 
16. R.W. Yeung, A comparative evaluation of numerical methods in free-surface hydrodynamics. Proceedings 

of the IUTAM symposium on Hydrodynamics of ocean wave-energy, Lisbon, Portugal (1985). 
17. J.V. Wehausen and E.V. Laitone, Surface Waves. Handbuch der Physik, Berlin: Springer-Verlag (1960). 


